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Abstract—
The truly marvellous proof of the Fermat’s Last Theorem (FLT).
Three truly marvellous proofs of the Jesmanowicz’s Conjecture (JC).

The truly marvellous proof of the Beal's Conjecture in the case 2 (BC).
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l. INTRODUTION

The Fermat’s Last Theorem is the famous theorem. The proof of FLT is dated July/August 1997.
The Jesmanowicz’s Conjecture [1] concerns a pythagorean triples, that is - the Diophantus Equation.
The Beal’s Conjecture is a generalization of Fermat’s Last Theorem. [5]

1. THE TRULY MARVELLOUS PROOF OF THE FERMAT’S LAST THEOREM
Theorem 1 (FLT). For all n € {3,4,5,...} and forall A,B,C € {1,2,3,...} the equation

A"+ B" =™
has no primitive solutions [A4,B,C] in {1,2,3,...}.
Proof. Suppose that for some n € {3,4,5,...} and for some co-prime 4, B,C € {1,2,3,... }:
(A"+B"=C"AA+B>CAA*+B?>C?>A..ANAVT 4+ BV 1 > 1),
In the another case we will have — For some n € {3,4,5, ...} and for some co-prime 4,B,C € {1,2,3,...}:
(A"+B"=C"ANA+B<CAA*+B?><C*AN.ANAV1+Bv1< (v
A"+ BT < C™,
which is inconsistent with A™ + B™ = C". [2]

Then only one number out of a given solution [A,B,C] is even and the number A+ B —C is even.
Without loss for this proof we can assume that A,C — B € {1,3,5,...} and that A+ B —C =2v(u —v),
inasmuch as - For all w,v € {0,1,2,...} suchthat ged(u,v) =1 and u—v €{...,—5,-3,-1,1,3,5,.. }:

2v(u —v) €{...,—4,-2,0,2,4,... }.

From the above it follows that — For each solution [A4,B,C] and for all relatively prime u,v € {0,1,2,...}
such that u —v € {...,—5,-3,—1,1,3,5, ... }:

—[A=u?—-v2AB=2uwA—-C=—-?+1v?)]>
{(H[A=u?—-v2VvB=2uwVv-C=—W?+v3)]A-[A+B-C=2vlu—-v)]|}=>
20(u—v) ¢ {..,—4,-2,0,2,4,..},
which is inconsistent with 2v(u —v) € {...,—4,-2,0,2,4, ... }.
This is the truly marvellous proof of FLT.

Theorem 2. For all x,u,v € {1,2,3,...} suchthat ged(u,v) =1 and u—v € {1,3,5,... }:

{(u +v)*(u—v)* = [(u Tu)” ; (u— U)xr _ [(u +v)* ; (u—v)*]°

= (u? —v?)?2W? —v®)* + Quv)?Cuw)* < W? —v2)?(W? + v2)* + Quv)*(W? + v?)*

= W? +U2)2+x}_

A (W2 — v2)2+* 4+ (Qup)?+*



Theorem 3. Let u and v be two relatively prime natural numbers such that u —v is positive and odd.
Then (u? —v?,2uv, u? + v?) is a primitive Pythagorean triple, and each primitive Pythagorean triple arises in
this way for some u,v [3], that is to say for all primitive Pythagorean triple there exists different and only one
shared pair (u,v). [2]

M. THREE TRULY MARVELLOUS PROOFS OF THE JESMANOWICZ’S CONJECTURE

Conjecture 1 (JeSmanowicz Conjecture). For all x,y,z,u,v € {1,2,3,...} such that (x,y,z) # (2,2,2) and
ged(u,v)=1 and u—v € {1,3,5,.. }

W? —v®)* + Quv)Y # (u? +v?)2

Proof 1. Suppose that for some x,y,z,u,v € {1,2,3,...} such that (x,v,z) # (2,2,2) and gecd(u,v) =1
and u—v € {1,3,5,.. }:

W? —v?)* + Q)Y = (u? +v?)2

On the strength of the Theorem 2 — For some x,z,y,u,v € {1,2,3,...} such that (x,y,z) # (2,2,2) and
ged(u,v)=1and u—ve{135 ..}

(u+v)"+(u—v)"2 (u+v)x—(u—v)"2_
2 - 2 -

(u? —v2)* = [

Z42 Y12 z y z y
[(u2 + vz)f] - [(Zuv)f] = [(u2 + v2)5+(2uv)5] [(u2 + vz)i—(Zuv)E] =
{{u+v)*+ w—0v)*P?=22W? +v>)? A [(u+v)* — (u—v)*)? = 22QCw)’} =
2,y €{246,..}.
At present we assume that the number u? — v? is minimal. [4]
Therefore — For some x,Z,Y,u,v € {1,2,3,...} and for some z,y € {2,4,6,...} such that (x,y,z) # (2,2,2)
and ged(w,v) =1 and u—v € {1,3,5,...}:
z y

w—v)*=@W? +v?)?—-Cuw)’ = W? +v2)2—Qu)z = u—v <u? —v?
which is inconsistent with minimal u? — v?.
This is the truly marvellous proof 1 of JC.

Proof 2. Suppose that for some x,y,z,u,v € {1,2,3,...} such that (x,v,z) # (2,2,2) and ged(u,v) =1
and u—v € {1,3,5,... }:

W? —v?)* + Quv)Y = (u? + v?)=
If u=2 and v =1, then
(B'+4'<52A3'+42 <52A32+41 <52A33+42<53A324+43 <53A33+43<53)A
(31 + 4! >5' A3 +43 > 52 A33 + 41 > 52),
If u—v >v,then
W? — v + Quw) > W? +vH)A
[W?2 = v+ Quv)? < W? +v2)?2 A2 —v2)? + Quu)t < (W? +v?)?] A
[W? = v+ Quv)® > W? +v2)?2 A W? —v2)3 + Quu)t > W? +v?)?] A
[W? —v2)3 + Quv)? < W? +v2)3 A (W? —v?)? + Quv)3® < (u? +v?)?3.
If u—v <wv,then
W? — v + Quv)t > W? +vH)A
[W? = v+ Quv)? < W? +v2)?2 A W2 —v2)? + Quu)t < W? +v2)?] A
[W? = v+ Quv)® > W? +v2)2 A W? —v2)3 + Quu)t < W? +v2)?] A
[W? —v2)3 + Quv)? < W? +v2)3 A (W? —v?)? + Cuv)3 < (u? +v?)?3.

Moreover on the strength of the Theorem 2 —we will have: (u? —v?)3 + Quv)3 < (u? +v?)3.



Definition 1. cpf(pu? — pv?, p2uv, pu? + pv?) = p, p isthe odd common prime factor with the numbers
of the solutions [u? — v?, 2uv, u? + v?] such that p,u,v,u? —v? are co-prime. [2] Thisis the definition 1.

Therefore on the strength of the Theorem 2 — For some z € {3,4,5, ...} and for some p,q € {0,1,2,...} and for
some u,v € {1,2,3,...} suchthat p > g <z and p,u,v,u? —v? are co-prime and u —v € {1,3,5, ... }:

[(W? —v2)?*P + Quv)? 1 = (u? +v2)? v (u? — v2)%79 + Quv)?*? = (u? + v?)?].
If z+p >z =2z—q,then for some p = u? + v? we get:
[pz+p(u2 _ v2)z+p + pz—q(zuv)z—q _ pz(uz + U2)z _ p2z] N
[pp+q (uZ _ U2)2+p + (Zuv)z—q — pz+q Vv pp(uZ _ U2)2+p + (ZuU)Z — pz] =
gcd(p, 2uv) > 1,
which is inconsistent with p,u, v, u?> —v? are co-prime.
Or—If z+p>z=>=2z—q,then for some p we get:
[pz—q (uz _ UZ)z—q + pz+p(2uv)z+p _ pz(uz + UZ)Z _ p2z] N
[(? = v*)" 7 + p"*1Quw)**? = p™* v (¥ —v?)” + p*Quw)"*? = p’] =
ged(p,u? —v?) > 1,
which is inconsistent with p,u, v, u? —v? are co-prime.
This is the truly marvellous proof 2 of JC.

Proof 3. Suppose that for some x,y,z,u,v € {1,2,3,...} such that (x,v,z) # (2,2,2) and ged(u,v) =1
and u—v € {1,3,5,.. }:

Ww? —v2)* + Quv)Y = (u? + v?)=

On the strength of the Theorem 3 — For some x,y,zu,v € {1,2,3,...} such that (x,y,z) # (2,2,2) and
ged(u,v)=1and u—ve{135..}

[(W? —v2)* + Quu)Y = W? +v3)? Au? —v? + 2uv > u? + v2 A (W? —v2)? + Quw)? = (W? +v?)?]
= [W? —v2)* = W? —v2)?2 A QCuw)Y = Quu)? A (W? +v2)? = (W? +v2)?] = (x,y,2)
= (2,2,2),

which is inconsistent with (x,y, z) # (2,2,2). [2]
This is the truly marvellous proof 3 of JC.

V. THE TRULY MARVELLOUS PROOF OF THE BEAL’S CONJECTURE
Conjecture 2 (Beal Conjecture in the case 2). Forall x,y,z € {3,4,5...} the equation
A* + BY = (C*
has no primitive solutions [A4,B,C] in {1,2,3,...}.

Proof of the Main Conjecture. Let for some x,y,z € {3,4,5,...} and for some A,B,C € {1,2,3,...} such
that A,B and C are co-prime:

A% +BY =C*.

Then only one number out of a given solution [A,B,C] is even and the number A+ B —C is even.
Without loss for this proof we can assume that A,C — B € {1,3,5,...} and that A+ B —C = 2v(u —v),
inasmuch as — For all w,v € {0,1,2,...} suchthat ged(u,v) =1 and u—v €{...,—5,-3,-1,1,3,5,.. }:

2v(u —v) €{...,—4,-2,0,2,4,... }.

Therefore on the strength of the above two proofs of the Jesmanowicz’s Conjecture — For each solution
[A4,B,C] and forall u,v € {0,1,2,...} suchthat ged(u,v) =1 and u—-v €{..,—5,-3,-1,1,3,5,.. }:

(A+u?>—v?AB#2uwAC#u?+v)=2A+B—-C+2v(u—v)=>2v(u—-v) &{.,—4,-2,024,..},
which is inconsistent with 2v(u —v) € {...,—4,-2,0,2,4, ... }.
This is the truly marvellous proof of BC.
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