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Abstract
The complete proof of the Erdés-Straus Conjecture.
The proof of the JeSmanowicz’s Conjecture.
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I. INTRODUCTION
The Erd6s-Straus Conjecture and the Jesmanowicz’'s Conjecture concerns the Diophantine
Equations. One important topic in number theory is the study of Diophantine equations, equations in
which only integer solutions are permitted. The type of Diophantine equation discussed in this paper
concerns Egyptian fractions, which deal with the representation of rational numbers as the sum of

three unit fractions. [2] The Jesmanowicz conjecture [1] is slightly restated because The Fermat
Last Theorem is true. [3]

Il. THE PROOF OF THE ERDOS-STRAUS CONJECTURE (ESC)

Conjecture (Erdés— Straus Conjecture). Forall n € {2,3,4,...} and forsome a,b,c € {1,2,3,... }:
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Proof. Forall n € {2,4,6,...} and for some a,b,c € {1,2,3,... }:
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Forall n € {3,7,11,...} and for some a,c,b € {1,2,3,... }:
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It is easy to verify that
{5,9,13,...} = {5,25,45, ...} U {9,29,49, ...} U {13,33,53, ...} U {21,41,61, ... }.

On the strength of [2] for all n € {13,33,53,...} and for some a,b,c € {1,2,3,... }:
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From (1) we obtain:
forall n € {3,9,15,21,27,33,39,45,51,57,63, ...} and for some a,c,b € {1,2,3,...}:
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and for all n € {7,21,35,49,63,77,91,105,119,133,147, ...} and for some a,c,b € {1,2,3,... }:
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and for all n € {11,33,55,77,99,121,143,165,187,209, ...} and for some a,c,b € {1,2,3, ... }:
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From the above we get
{5,25,65,85,125,145,185,205,245,265,305,325, ...} U
{29,89,109,149,169,229,269,289,349,389, ... } U
{41,61,101,181,221,241,281,401,421, ... }.

Forall n € {5,13,21, ...} and for some a,b,c € {1,2,3,... }:
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Forall n € {5,11,17,...} and for some a,b,c € {1,2,3,... }:
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From the above it follows that further we have to prove ESC for all odd prime numbers such that
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which is obviously.



Examples.

For n =337 and for m = 18 and for some x,c € {1,2,3, ... }:
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Hence for all n € {337,1011,1685, ...} and for some a,b,c € {1,2,3, ... }:

[4_1+1+1 . 1685n_( v —antgnepa 200 ]
n_a'bTe 337 o re=a n= 337 |

For n =1201 and for m =8 and for some x,c € {1,2,3,...}:
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Hence for all n € {1201,3603,6005, ...} and for some a,b,c € {1,2,3,... }:
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Corollary. Forall n € {337,361,385,409,433, ...} and for some m,x,c € {1,2,3,...} and for
some d € {2,4,6,...} with 2nm > d:
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This is the complete proof.

. THE PROOF OF THE JESMANOWICZ’'S CONJECTURE

Conjecture 2 (Jesmanowicz Conjecture). Forall p,q € {0,1,2,...} and forall x,7,s € {1,2,3,...}
suchthat p+q >0 and r—s € {1,3,5,...} and ged(r,s) = 1:

[(r? — s2)PT* + (2rs)* #= (r? + s2)9™* A (1?2 —52)* + (2rs)P™* = (r? + s2)9t¥].



Proof. Suppose that for some p,q € {0,1,2,...} and for some x,7,s € {1,2,3, ...} such that
p+qg>0 and r—s €{1,3,5..} and ged(r,s) = 1:

[(r? — s2)PT* + (2rs)* = (r? + s2)9™* v (1?2 —s2)* + (2rs)P™* = (r? + s2)9t¥].

Lemma. Let r and s be two relatively prime natural numbers such that r — s is positive and odd.
Then (2 — s2,2rs, 72 + s%) is a primitive Pythagorean triple, and each primitive Pythagorean triple
arises in this way for some 1, s [4], that is to say for all primitive Pythagorean triple there exists
different and only one shared pair (7, s).

On the strength of the Theorem 1
p+x=2Ap=0Ax=2Aq+x=2Aq=0) = p+q=0,
which is inconsistent with p + g > 0. This is the proof.
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