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                                                                 I.  INTRODUCTION 

  The Erdős-Straus Conjecture and the Jeśmanowicz’s Conjecture concerns the Diophantine 

Equations. One important topic in number theory is the study of Diophantine equations, equations in 

which only integer solutions are permitted. The type of Diophantine equation discussed in this paper 

concerns Egyptian fractions, which deal with the representation of rational numbers as the sum of 

three unit fractions.      The Jeśmanowicz conjecture       is slightly restated because The Fermat 

Last Theorem is true.       

                          II.  THE PROOF OF THE ERDŐS-STRAUS CONJECTURE (ESC) 
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It is easy to verify that  
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From       we obtain:  
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From the above we get  

                                                 

                                            

                                        

For all                 and  for some                    

 
 

 
 

 

 
 

 

 
 

 

 
   

    

 
     

       

 
     

    

 
         

For all                 and  for some                    

 
 

 
 

 

 
 

 

 
 

 

 
   

   

 
           

      

 
         

From the above it follows that further we have to prove  ESC  for all odd prime numbers such that  

   

 
               

   

  
             

which is obviously.  
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This is the complete proof.  

                              III.  THE PROOF OF THE JEŚMANOWICZ’S CONJECTURE  

                                         For all                 and  for all                   
such that         and                 and               

                                                                



        Suppose that for some                 and  for some                   such that  

       and                 and               

                                                                

        Let     and     be two relatively prime natural numbers such that       is positive and odd. 

Then                     is a primitive Pythagorean triple, and each primitive Pythagorean triple 

arises in this way for some          , that is to say for all primitive Pythagorean triple there exists 

different and only one shared pair          

On the strength of the Theorem 1  

                                            

which is inconsistent with          This is the proof.  
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